2022-01-02 16:19:54 +00:00
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
|
|
#include "apfl.h"
|
2022-02-08 21:53:13 +00:00
|
|
|
|
|
|
|
|
#include "alloc.h"
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
#include "bytecode.h"
|
|
|
|
|
#include "compile.h"
|
|
|
|
|
#include "context.h"
|
2022-06-05 20:06:33 +00:00
|
|
|
#include "format.h"
|
2022-01-06 21:53:26 +00:00
|
|
|
#include "hashmap.h"
|
2022-04-22 21:17:28 +00:00
|
|
|
#include "strings.h"
|
2022-01-20 21:45:09 +00:00
|
|
|
#include "value.h"
|
|
|
|
|
|
|
|
|
|
static void
|
2022-02-10 21:39:39 +00:00
|
|
|
stack_must_drop(apfl_ctx ctx, apfl_stackidx index)
|
2022-01-20 21:45:09 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
assert(apfl_stack_drop(ctx, index));
|
2022-01-14 22:16:19 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static bool
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
get_argument(size_t *i, struct instruction_list *ilist, union instruction_or_arg *arg)
|
2022-01-14 22:16:19 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
if (*i >= ilist->len) {
|
2022-06-24 21:13:44 +00:00
|
|
|
return false;
|
2022-01-02 16:19:54 +00:00
|
|
|
}
|
|
|
|
|
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
*arg = ilist->instructions[(*i)++];
|
2022-06-24 21:13:44 +00:00
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
must_get_argument(apfl_ctx ctx, size_t *i, struct instruction_list *ilist, union instruction_or_arg *arg)
|
|
|
|
|
{
|
|
|
|
|
if (!get_argument(i, ilist, arg)) {
|
|
|
|
|
apfl_raise_const_error(ctx, APFL_RESULT_ERR, apfl_messages.corrupted_bytecode);
|
|
|
|
|
}
|
2022-01-02 16:19:54 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
variable_get(apfl_ctx ctx, struct apfl_string *name)
|
2022-01-02 16:19:54 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
struct apfl_value value;
|
|
|
|
|
if (!apfl_scope_get(ctx->scope, name, &value)) {
|
2022-06-24 21:13:44 +00:00
|
|
|
// TODO: Include variable name in error
|
|
|
|
|
apfl_raise_const_error(ctx, APFL_RESULT_ERR, apfl_messages.variable_doesnt_exist);
|
2022-01-02 16:19:54 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_stack_must_push(ctx, value);
|
2022-01-02 16:19:54 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
variable_set(apfl_ctx ctx, struct apfl_string *name, bool keep_on_stack)
|
2022-01-02 16:19:54 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
struct apfl_value value;
|
|
|
|
|
if (!apfl_stack_get(ctx, &value, -1)) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_invalid_stackidx(ctx);
|
2022-01-04 22:11:38 +00:00
|
|
|
}
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
if (!apfl_scope_set(&ctx->gc, ctx->scope, name, value)) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_alloc_error(ctx);
|
2022-01-04 20:51:44 +00:00
|
|
|
}
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
if (keep_on_stack) {
|
|
|
|
|
// If the value should be kept on the stack, the value is now in two
|
|
|
|
|
// places. We need to set the COW flag to prevent mutations of one copy
|
|
|
|
|
// affecting the other one.
|
|
|
|
|
value = apfl_value_set_cow_flag(value);
|
|
|
|
|
} else {
|
|
|
|
|
stack_must_drop(ctx, -1);
|
2022-01-04 20:51:44 +00:00
|
|
|
}
|
2022-01-20 21:45:09 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
variable_new(apfl_ctx ctx, struct apfl_string *name)
|
2022-01-20 21:45:09 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
if (!apfl_scope_create_var(&ctx->gc, ctx->scope, name)) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_alloc_error(ctx);
|
2022-01-04 20:51:44 +00:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
evaluate(apfl_ctx ctx, size_t *i, struct instruction_list *ilist)
|
2022-01-04 23:25:41 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
union instruction_or_arg arg;
|
2022-01-04 23:25:41 +00:00
|
|
|
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
assert(*i < ilist->len);
|
|
|
|
|
switch (ilist->instructions[(*i)++].instruction) {
|
|
|
|
|
case INSN_NIL:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_push_nil(ctx);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_TRUE:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_push_bool(ctx, true);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_FALSE:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_push_bool(ctx, false);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_NUMBER:
|
2022-06-24 21:13:44 +00:00
|
|
|
must_get_argument(ctx, i, ilist, &arg);
|
|
|
|
|
apfl_push_number(ctx, arg.number);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_STRING:
|
2022-06-24 21:13:44 +00:00
|
|
|
must_get_argument(ctx, i, ilist, &arg);
|
|
|
|
|
apfl_stack_must_push(ctx, (struct apfl_value) {
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
.type = VALUE_STRING,
|
|
|
|
|
.string = arg.string,
|
|
|
|
|
});
|
2022-06-24 21:13:44 +00:00
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_LIST:
|
2022-06-24 21:13:44 +00:00
|
|
|
must_get_argument(ctx, i, ilist, &arg);
|
|
|
|
|
apfl_list_create(ctx, arg.count);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_LIST_APPEND:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_list_append(ctx, -2, -1);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_LIST_EXPAND_INTO:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_list_append_list(ctx, -2, -1);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_DICT:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_dict_create(ctx);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_DICT_APPEND_KVPAIR:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_dict_set(ctx, -3, -2, -1);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_GET_MEMBER:
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_get_member(ctx, -2, -1);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_VAR_NEW:
|
2022-06-24 21:13:44 +00:00
|
|
|
must_get_argument(ctx, i, ilist, &arg);
|
|
|
|
|
variable_new(ctx, arg.string);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_VAR_GET:
|
2022-06-24 21:13:44 +00:00
|
|
|
must_get_argument(ctx, i, ilist, &arg);
|
|
|
|
|
variable_get(ctx, arg.string);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_VAR_SET:
|
2022-06-24 21:13:44 +00:00
|
|
|
must_get_argument(ctx, i, ilist, &arg);
|
|
|
|
|
variable_set(ctx, arg.string, true);
|
|
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_NEXT_LINE:
|
|
|
|
|
ctx->execution_line++;
|
2022-06-24 21:13:44 +00:00
|
|
|
return;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
case INSN_SET_LINE:
|
2022-06-24 21:13:44 +00:00
|
|
|
must_get_argument(ctx, i, ilist, &arg);
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
ctx->execution_line = arg.count;
|
2022-06-24 21:13:44 +00:00
|
|
|
return;
|
2022-01-04 23:25:41 +00:00
|
|
|
}
|
2022-01-20 21:45:09 +00:00
|
|
|
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
assert(false);
|
2022-01-04 23:25:41 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
evaluate_list(apfl_ctx ctx, struct instruction_list *ilist)
|
2022-01-04 23:25:41 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
ctx->execution_line = ilist->line;
|
|
|
|
|
size_t i = 0;
|
|
|
|
|
while (i < ilist->len) {
|
2022-06-24 21:13:44 +00:00
|
|
|
evaluate(ctx, &i, ilist);
|
2022-01-04 23:25:41 +00:00
|
|
|
}
|
|
|
|
|
}
|
2022-01-04 20:51:44 +00:00
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
|
|
|
|
eval_expr_inner(apfl_ctx ctx, struct apfl_expr expr)
|
2022-01-06 21:53:26 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
struct instruction_list *ilist = apfl_instructions_new(&ctx->gc, expr.position.line);
|
|
|
|
|
if (ilist == NULL) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_alloc_error(ctx);
|
2022-01-14 22:16:19 +00:00
|
|
|
}
|
|
|
|
|
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
if (!apfl_gc_tmproot_add(&ctx->gc, GC_OBJECT_FROM(ilist, GC_TYPE_INSTRUCTIONS))) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_alloc_error(ctx);
|
2022-01-14 22:16:19 +00:00
|
|
|
}
|
|
|
|
|
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
struct apfl_error error;
|
|
|
|
|
if (!apfl_compile(&ctx->gc, expr, &error, ilist)) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_error_object(ctx, error);
|
2022-01-06 21:53:26 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
evaluate_list(ctx, ilist);
|
2022-01-02 16:19:54 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
2022-04-21 19:15:20 +00:00
|
|
|
eval_expr(apfl_ctx ctx, struct apfl_expr expr)
|
2022-01-02 16:19:54 +00:00
|
|
|
{
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
size_t tmproots = apfl_gc_tmproots_begin(&ctx->gc);
|
2022-06-24 21:13:44 +00:00
|
|
|
eval_expr_inner(ctx, expr);
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
apfl_gc_tmproots_restore(&ctx->gc, tmproots);
|
2022-01-02 16:19:54 +00:00
|
|
|
}
|
2022-01-20 21:45:09 +00:00
|
|
|
|
2022-04-22 21:13:01 +00:00
|
|
|
bool
|
2022-06-05 20:06:33 +00:00
|
|
|
apfl_debug_print_val(apfl_ctx ctx, apfl_stackidx index, struct apfl_format_writer w)
|
2022-01-20 21:45:09 +00:00
|
|
|
{
|
|
|
|
|
struct apfl_value value;
|
Implement mark&sweep garbage collection and bytecode compilation
Instead of the previous refcount base garbage collection, we're now using
a basic tri-color mark&sweep collector. This is done to support cyclical
value relationships in the future (functions can form cycles, all values
implemented up to this point can not).
The collector maintains a set of roots and a set of objects (grouped into
blocks). The GC enabled objects are no longer allocated manually, but will
be allocated by the GC. The GC also wraps an allocator, this way the GC
knows, if we ran out of memory and will try to get out of this situation by
performing a full collection cycle.
The tri-color abstraction was chosen for two reasons:
- We don't have to maintain a list of objects that need to be marked, we
can simply grab the next grey one.
- It should allow us to later implement incremental collection (right now
we only do a stop-the-world collection).
This also switches to a bytecode based evaluation of the code: We no longer
directly evaluate the AST, but first compile it into a series of
instructions, that are evaluated in a separate step. This was done in
preparation for inplementing functions: We only need to turn a function
body into instructions instead of evaluating the node again with each call
of the function. Also, since an instruction list is implemented as a GC
object, this then removes manual memory management of the function body and
it's child nodes. Since the GC and the bytecode go hand in hand, this was
done in one (giant) commit.
As a downside, we've now lost the ability do do list matching on
assignments. I've already started to work on implementing this in the new
architecture, but left it out of this commit, as it's already quite a large
commit :)
2022-04-11 20:24:22 +00:00
|
|
|
if (!apfl_stack_pop(ctx, &value, index)) {
|
2022-06-05 20:06:33 +00:00
|
|
|
FMT_TRY(apfl_format_put_string(w, "apfl_debug_print_val: Invalid stack index "));
|
|
|
|
|
FMT_TRY(apfl_format_put_int(w, (int)index));
|
|
|
|
|
FMT_TRY(apfl_format_put_string(w, "\n"));
|
2022-04-22 21:13:01 +00:00
|
|
|
return true;
|
2022-01-20 21:45:09 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-05 20:06:33 +00:00
|
|
|
return apfl_value_print(value, w);
|
2022-01-20 21:45:09 +00:00
|
|
|
}
|
2022-04-21 19:15:20 +00:00
|
|
|
|
|
|
|
|
struct apfl_iterative_runner_data {
|
|
|
|
|
apfl_ctx ctx;
|
|
|
|
|
apfl_tokenizer_ptr tokenizer;
|
|
|
|
|
apfl_parser_ptr parser;
|
|
|
|
|
enum apfl_result result;
|
2022-06-24 21:13:44 +00:00
|
|
|
bool with_error_on_stack;
|
2022-04-21 19:15:20 +00:00
|
|
|
bool end;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
apfl_iterative_runner
|
|
|
|
|
apfl_iterative_runner_new(apfl_ctx ctx, struct apfl_source_reader reader)
|
|
|
|
|
{
|
|
|
|
|
apfl_iterative_runner runner = ALLOC_OBJ(ctx->gc.allocator, struct apfl_iterative_runner_data);
|
|
|
|
|
if (runner == NULL) {
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
apfl_tokenizer_ptr tokenizer = apfl_tokenizer_new(ctx->gc.allocator, reader);
|
|
|
|
|
if (tokenizer == NULL) {
|
|
|
|
|
FREE_OBJ(ctx->gc.allocator, runner);
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
apfl_parser_ptr parser = apfl_parser_new(ctx->gc.allocator, apfl_tokenizer_as_token_source(tokenizer));
|
|
|
|
|
if (parser == NULL) {
|
|
|
|
|
FREE_OBJ(ctx->gc.allocator, runner);
|
|
|
|
|
apfl_tokenizer_destroy(tokenizer);
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*runner = (struct apfl_iterative_runner_data) {
|
|
|
|
|
.ctx = ctx,
|
|
|
|
|
.tokenizer = tokenizer,
|
|
|
|
|
.parser = parser,
|
|
|
|
|
.result = APFL_RESULT_OK,
|
|
|
|
|
.end = false,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
return runner;
|
|
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
2022-04-21 20:40:27 +00:00
|
|
|
handle_parse_error(apfl_ctx ctx, struct apfl_error error)
|
|
|
|
|
{
|
2022-06-24 21:13:44 +00:00
|
|
|
enum apfl_result errtype = APFL_RESULT_ERR;
|
2022-04-21 20:40:27 +00:00
|
|
|
if (apfl_error_is_fatal_type(error.type)) {
|
2022-06-24 21:13:44 +00:00
|
|
|
errtype = APFL_RESULT_ERR_FATAL;
|
2022-04-21 20:40:27 +00:00
|
|
|
}
|
|
|
|
|
|
2022-04-24 14:10:35 +00:00
|
|
|
const char *const_str = apfl_error_as_const_string(error);
|
|
|
|
|
if (const_str != NULL) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_const_error(ctx, errtype, const_str);
|
2022-04-24 14:10:35 +00:00
|
|
|
}
|
2022-04-21 20:40:27 +00:00
|
|
|
|
|
|
|
|
struct apfl_string string;
|
|
|
|
|
if (!apfl_error_as_string(error, ctx->gc.allocator, &string)) {
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_alloc_error(ctx);
|
2022-04-21 20:40:27 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
if (!apfl_move_string_onto_stack(ctx, string)) {
|
|
|
|
|
apfl_raise_alloc_error(ctx);
|
2022-04-21 20:40:27 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_raise_error_with_type(ctx, -1, errtype);
|
2022-04-21 20:40:27 +00:00
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
static void
|
|
|
|
|
iterative_runner_next_protected(apfl_ctx ctx, void *opaque)
|
2022-04-21 19:15:20 +00:00
|
|
|
{
|
2022-06-24 21:13:44 +00:00
|
|
|
apfl_iterative_runner runner = opaque;
|
2022-04-21 19:15:20 +00:00
|
|
|
|
|
|
|
|
switch (apfl_parser_next(runner->parser)) {
|
|
|
|
|
case APFL_PARSE_OK:
|
2022-06-24 21:13:44 +00:00
|
|
|
eval_expr(ctx, apfl_parser_get_expr(runner->parser));
|
|
|
|
|
return;
|
2022-04-21 19:15:20 +00:00
|
|
|
case APFL_PARSE_ERROR:
|
2022-06-24 21:13:44 +00:00
|
|
|
handle_parse_error(runner->ctx, apfl_parser_get_error(runner->parser));
|
|
|
|
|
return;
|
2022-04-21 19:15:20 +00:00
|
|
|
case APFL_PARSE_EOF:
|
|
|
|
|
runner->end = true;
|
2022-06-24 21:13:44 +00:00
|
|
|
return;
|
2022-04-21 19:15:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert(false);
|
2022-06-24 21:13:44 +00:00
|
|
|
}
|
2022-04-21 19:15:20 +00:00
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
bool
|
|
|
|
|
apfl_iterative_runner_next(apfl_iterative_runner runner)
|
|
|
|
|
{
|
|
|
|
|
if (runner->end) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
apfl_stack_clear(runner->ctx);
|
|
|
|
|
|
|
|
|
|
runner->with_error_on_stack = false;
|
|
|
|
|
runner->result = apfl_protected(
|
|
|
|
|
runner->ctx,
|
|
|
|
|
iterative_runner_next_protected,
|
|
|
|
|
runner,
|
|
|
|
|
&runner->with_error_on_stack
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
return !runner->end;
|
2022-04-21 19:15:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum apfl_result
|
|
|
|
|
apfl_iterative_runner_get_result(apfl_iterative_runner runner)
|
|
|
|
|
{
|
|
|
|
|
return runner->result;
|
|
|
|
|
}
|
|
|
|
|
|
2022-06-24 21:13:44 +00:00
|
|
|
bool
|
|
|
|
|
apfl_iterative_runner_has_error_on_stack(apfl_iterative_runner runner)
|
|
|
|
|
{
|
|
|
|
|
return runner->with_error_on_stack;
|
|
|
|
|
}
|
|
|
|
|
|
2022-04-21 19:15:20 +00:00
|
|
|
void
|
|
|
|
|
apfl_iterative_runner_destroy(apfl_iterative_runner runner)
|
|
|
|
|
{
|
|
|
|
|
if (runner == NULL) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
apfl_parser_destroy(runner->parser);
|
|
|
|
|
apfl_tokenizer_destroy(runner->tokenizer);
|
|
|
|
|
FREE_OBJ(runner->ctx->gc.allocator, runner);
|
|
|
|
|
}
|