#include #include #include "alloc.h" #include "bytecode.h" #include "context.h" #include "gc.h" #include "resizable.h" #include "scope.h" #include "value.h" #define DEBUG_GC 1 struct gc_object { // Unlike most other tagged unions in apfl, the union is first here. // This allows us to have pointers to the wrapped object that can be cast // into gc_object pointers and vice versa. union { struct list_header list; struct dict_header dict; struct apfl_value var; struct apfl_string string; struct instruction_list instructions; struct scope scope; struct stack stack; }; enum gc_type type; enum gc_status status; }; #define GC_OBJECTS_PER_BLOCK 128 struct gc_block { struct gc_object objects[GC_OBJECTS_PER_BLOCK]; struct gc_block *next; }; static void * gc_allocator(void *opaque, void *oldptr, size_t oldsize, size_t newsize) { struct gc *gc = opaque; void *out = ALLOCATOR_CALL(gc->base_allocator, oldptr, oldsize, newsize); if (newsize != 0 && out == NULL) { // We're out of memory! Try to get out of this situation by doing a full // GC run. apfl_gc_full(gc); // Hopefully we now have memory again. Try the allocation again. out = ALLOCATOR_CALL(gc->base_allocator, oldptr, oldsize, newsize); } if (newsize != 0 && out == NULL) { return NULL; } // TODO: incremental GC step return out; } struct gc_object * apfl_gc_object_from_ptr(void *ptr, enum gc_type type) { struct gc_object *object = ptr; assert(object->type == type); return object; } void apfl_gc_init(struct gc *gc, struct apfl_allocator allocator, gc_roots_getter roots_getter, void *roots_getter_opaque) { gc->base_allocator = allocator; gc->allocator = (struct apfl_allocator) { .opaque = gc, .alloc = gc_allocator, }; gc->block = NULL; gc->roots_getter = roots_getter; gc->roots_getter_opaque = roots_getter_opaque; gc->tmproots = (struct gc_tmproots) { .roots = NULL, .len = 0, .cap = 0, }; gc->tmproot_for_adding = NULL; } static struct gc_block * new_block(struct gc *gc) { struct gc_block *block = ALLOC_OBJ(gc->allocator, struct gc_block); if (block == NULL) { return NULL; } for (size_t i = 0; i < GC_OBJECTS_PER_BLOCK; i++) { block->objects[i] = (struct gc_object) { .status = GC_STATUS_FREE }; } block->next = NULL; return block; } static struct gc_object * new_object_inner(struct gc *gc) { struct gc_block **cur = &gc->block; while (*cur != NULL) { struct gc_block *block = *cur; for (size_t i = 0; i < GC_OBJECTS_PER_BLOCK; i++) { if (block->objects[i].status == GC_STATUS_FREE) { return &block->objects[i]; } } cur = &block->next; } struct gc_block *nb = new_block(gc); if (nb == NULL) { return NULL; } *cur = nb; return &nb->objects[0]; } static struct gc_object * new_object(struct gc *gc, enum gc_type type) { struct gc_object *object = new_object_inner(gc); if (object == NULL) { return NULL; } assert(object->status == GC_STATUS_FREE); object->status = GC_STATUS_WHITE; object->type = type; return object; } #define IMPL_NEW(t, name, type, field) \ t * \ name(struct gc *gc) \ { \ struct gc_object *object = new_object(gc, type); \ return object == NULL ? NULL : &object->field; \ } IMPL_NEW(struct list_header, apfl_gc_new_list, GC_TYPE_LIST, list ) IMPL_NEW(struct dict_header, apfl_gc_new_dict, GC_TYPE_DICT, dict ) IMPL_NEW(struct apfl_value, apfl_gc_new_var, GC_TYPE_VAR, var ) IMPL_NEW(struct apfl_string, apfl_gc_new_string, GC_TYPE_STRING, string ) IMPL_NEW(struct instruction_list, apfl_gc_new_instructions, GC_TYPE_INSTRUCTIONS, instructions ) IMPL_NEW(struct scope, apfl_gc_new_scope, GC_TYPE_SCOPE, scope ) size_t apfl_gc_tmproots_begin(struct gc *gc) { return gc->tmproots.len; } void apfl_gc_tmproots_restore(struct gc *gc, size_t newlen) { assert(newlen <= gc->tmproots.len); gc->tmproots.len = newlen; } bool apfl_gc_tmproot_add(struct gc *gc, struct gc_object *object) { // Since appending the new tmproot can trigger a garbage collection, we need // to set the tmproot as the tmproot_for_adding, so we'll treat it as a root // and not free it. assert(gc->tmproot_for_adding == NULL); gc->tmproot_for_adding = object; bool ok = apfl_resizable_append( gc->allocator, sizeof(struct gc_object *), (void **)&gc->tmproots.roots, &gc->tmproots.len, &gc->tmproots.cap, &object, 1 ); gc->tmproot_for_adding = NULL; return ok; } static void color_object_grey(struct gc_object *object) { object->status = object->status == GC_STATUS_BLACK ? GC_STATUS_BLACK : GC_STATUS_GREY; } static void visit_roots(struct gc *gc, gc_visitor visitor, void *opaque) { gc->roots_getter(gc->roots_getter_opaque, visitor, opaque); for (size_t i = 0; i < gc->tmproots.len; i++) { visitor(opaque, gc->tmproots.roots[i]); } if (gc->tmproot_for_adding != NULL) { visitor(opaque, gc->tmproot_for_adding); } } static void mark_roots_visitor(void *opaque, struct gc_object *root) { (void)opaque; color_object_grey(root); } static void mark_roots(struct gc *gc) { visit_roots(gc, mark_roots_visitor, NULL); } static void visit_children(struct gc_object *object, gc_visitor cb, void *opaque) { switch (object->type) { case GC_TYPE_LIST: apfl_gc_list_traverse(&object->list, cb, opaque); return; case GC_TYPE_DICT: apfl_gc_dict_traverse(&object->dict, cb, opaque); return; case GC_TYPE_VAR: apfl_gc_var_traverse(&object->var, cb, opaque); return; case GC_TYPE_SCOPE: apfl_gc_scope_traverse(&object->scope, cb, opaque); return; case GC_TYPE_STRING: // Intentionally left blank. Object doesn't reference other objects. return; case GC_TYPE_INSTRUCTIONS: apfl_gc_instructions_traverse(&object->instructions, cb, opaque); return; } assert(false); } static void trace_callback(void *opaque, struct gc_object *object) { (void)opaque; color_object_grey(object); } static void trace(struct gc_object *object) { object->status = GC_STATUS_BLACK; visit_children(object, trace_callback, NULL); } static void trace_while_having_grey(struct gc *gc) { bool found_grey; do { found_grey = false; for ( struct gc_block *cur = gc->block; cur != NULL; cur = cur->next ) { for (size_t i = 0; i < GC_OBJECTS_PER_BLOCK; i++) { struct gc_object *object = &cur->objects[i]; if (object->status == GC_STATUS_GREY) { trace(object); found_grey = true; } } } } while (found_grey); } static void deinit_object(struct gc *gc, struct gc_object *object) { switch (object->type) { case GC_TYPE_LIST: apfl_list_deinit(gc->allocator, &object->list); return; case GC_TYPE_DICT: apfl_dict_deinit(&object->dict); return; case GC_TYPE_VAR: return; case GC_TYPE_STRING: apfl_string_deinit(gc->allocator, &object->string); return; case GC_TYPE_INSTRUCTIONS: apfl_instructions_deinit(gc->allocator, &object->instructions); return; case GC_TYPE_SCOPE: apfl_scope_deinit(gc->allocator, &object->scope); return; } assert(false); } static void sweep(struct gc *gc) { struct gc_block **cur = &gc->block; while (*cur != NULL) { struct gc_block *block = *cur; bool completely_free = true; for (size_t i = 0; i < GC_OBJECTS_PER_BLOCK; i++) { struct gc_object *object = &block->objects[i]; switch (object->status) { case GC_STATUS_FREE: break; case GC_STATUS_WHITE: deinit_object(gc, object); object->status = GC_STATUS_FREE; break; case GC_STATUS_GREY: assert(false /*Encountered grey object while sweeping*/); break; case GC_STATUS_BLACK: object->status = GC_STATUS_WHITE; // Prepare for next run completely_free = false; break; } } if (completely_free) { *cur = block->next; FREE_OBJ(gc->allocator, block); } else { cur = &block->next; } } } void apfl_gc_full(struct gc *gc) { mark_roots(gc); apfl_gc_debug_dump_graph(gc, stderr); trace_while_having_grey(gc); apfl_gc_debug_dump_graph(gc, stderr); sweep(gc); apfl_gc_debug_dump_graph(gc, stderr); } static const char * dump_graph_bgcolor(enum gc_status status) { switch (status) { case GC_STATUS_BLACK: return "black"; case GC_STATUS_GREY: return "grey"; default: return "white"; } } static const char * dump_graph_fgcolor(enum gc_status status) { switch (status) { case GC_STATUS_BLACK: return "white"; default: return "black"; } } static const char * type_to_string(enum gc_type type) { switch (type) { case GC_TYPE_LIST: return "list"; case GC_TYPE_DICT: return "dict"; case GC_TYPE_VAR: return "var"; case GC_TYPE_STRING: return "string"; case GC_TYPE_INSTRUCTIONS: return "instructions"; case GC_TYPE_SCOPE: return "scope"; } assert(false); return "???"; } static void dump_graph_roots_visitor(void *opaque, struct gc_object *obj) { FILE *out = opaque; fprintf(out, "ROOTS -> obj_%p;\n", (void *)obj); } struct dump_graph_visitor_data { FILE *out; struct gc_object *parent; }; static void dump_graph_visitor(void *opaque, struct gc_object *obj) { struct dump_graph_visitor_data *data = opaque; fprintf(data->out, "obj_%p -> obj_%p\n", (void *)data->parent, (void *)obj); } void apfl_gc_debug_dump_graph(struct gc *gc, FILE *out) { fprintf(out, "digraph G {\n"); visit_roots(gc, dump_graph_roots_visitor, out); for (struct gc_block *block = gc->block; block != NULL; block = block->next) { int counts[4] = {0, 0, 0, 0}; for (size_t i = 0; i < GC_OBJECTS_PER_BLOCK; i++) { struct gc_object *obj = &block->objects[i]; counts[obj->status]++; if (obj->status == GC_STATUS_FREE) { continue; } fprintf(out, "blk_%p -> obj_%p;\n", (void *)block, (void *)obj); fprintf( out, "obj_%p [style=filled,fillcolor=%s,fontcolor=%s,label=\"Object %p\\ntype: %s\"];\n", (void *)obj, dump_graph_bgcolor(obj->status), dump_graph_fgcolor(obj->status), (void *)obj, type_to_string(obj->type) ); visit_children(obj, dump_graph_visitor, &(struct dump_graph_visitor_data) { .out = out, .parent = obj, }); } fprintf(out, "BLOCKS -> blk_%p;\n", (void *)block); fprintf( out, "blk_%p [label=\"Block %p\\nfree %d, black %d, grey %d, white %d\"];\n", (void *)block, (void *)block, counts[GC_STATUS_FREE], counts[GC_STATUS_BLACK], counts[GC_STATUS_GREY], counts[GC_STATUS_WHITE] ); } fprintf(out, "}\n"); } void apfl_gc_deinit(struct gc *gc) { for (struct gc_block *block = gc->block; block != NULL; ) { for (size_t i = 0; i < GC_OBJECTS_PER_BLOCK; i++) { struct gc_object *object = &block->objects[i]; if (object->status != GC_STATUS_FREE) { deinit_object(gc, object); } } struct gc_block *next = block->next; FREE_OBJ(gc->allocator, block); block = next; } gc->block = NULL; FREE_LIST(gc->allocator, gc->tmproots.roots, gc->tmproots.cap); }