Instead of the previous refcount base garbage collection, we're now using a basic tri-color mark&sweep collector. This is done to support cyclical value relationships in the future (functions can form cycles, all values implemented up to this point can not). The collector maintains a set of roots and a set of objects (grouped into blocks). The GC enabled objects are no longer allocated manually, but will be allocated by the GC. The GC also wraps an allocator, this way the GC knows, if we ran out of memory and will try to get out of this situation by performing a full collection cycle. The tri-color abstraction was chosen for two reasons: - We don't have to maintain a list of objects that need to be marked, we can simply grab the next grey one. - It should allow us to later implement incremental collection (right now we only do a stop-the-world collection). This also switches to a bytecode based evaluation of the code: We no longer directly evaluate the AST, but first compile it into a series of instructions, that are evaluated in a separate step. This was done in preparation for inplementing functions: We only need to turn a function body into instructions instead of evaluating the node again with each call of the function. Also, since an instruction list is implemented as a GC object, this then removes manual memory management of the function body and it's child nodes. Since the GC and the bytecode go hand in hand, this was done in one (giant) commit. As a downside, we've now lost the ability do do list matching on assignments. I've already started to work on implementing this in the new architecture, but left it out of this commit, as it's already quite a large commit :)
206 lines
5.6 KiB
C
206 lines
5.6 KiB
C
#include <assert.h>
|
|
|
|
#include "apfl.h"
|
|
|
|
#include "alloc.h"
|
|
#include "bytecode.h"
|
|
#include "compile.h"
|
|
#include "context.h"
|
|
#include "hashmap.h"
|
|
#include "internal.h"
|
|
#include "value.h"
|
|
|
|
#define TRY(ex) \
|
|
do { \
|
|
enum apfl_result result = (ex); \
|
|
if (result != APFL_RESULT_OK) { \
|
|
return result; \
|
|
} \
|
|
} while (0)
|
|
|
|
static enum apfl_result
|
|
stack_push_or_fatal(apfl_ctx ctx, struct apfl_value value)
|
|
{
|
|
return apfl_stack_push(ctx, value) ? APFL_RESULT_OK : APFL_RESULT_ERR_FATAL;
|
|
}
|
|
|
|
static void
|
|
stack_must_drop(apfl_ctx ctx, apfl_stackidx index)
|
|
{
|
|
assert(apfl_stack_drop(ctx, index));
|
|
}
|
|
|
|
static enum apfl_result
|
|
get_argument(size_t *i, struct instruction_list *ilist, union instruction_or_arg *arg)
|
|
{
|
|
if (*i >= ilist->len) {
|
|
return APFL_RESULT_ERR;
|
|
}
|
|
|
|
*arg = ilist->instructions[(*i)++];
|
|
return APFL_RESULT_OK;
|
|
}
|
|
|
|
static enum apfl_result
|
|
variable_get(apfl_ctx ctx, struct apfl_string *name)
|
|
{
|
|
struct apfl_value value;
|
|
if (!apfl_scope_get(ctx->scope, name, &value)) {
|
|
return APFL_RESULT_ERR;
|
|
}
|
|
|
|
return stack_push_or_fatal(ctx, value);
|
|
}
|
|
|
|
static enum apfl_result
|
|
variable_set(apfl_ctx ctx, struct apfl_string *name, bool keep_on_stack)
|
|
{
|
|
struct apfl_value value;
|
|
if (!apfl_stack_get(ctx, &value, -1)) {
|
|
return APFL_RESULT_ERR;
|
|
}
|
|
if (!apfl_scope_set(&ctx->gc, ctx->scope, name, value)) {
|
|
return APFL_RESULT_ERR_FATAL;
|
|
}
|
|
if (keep_on_stack) {
|
|
// If the value should be kept on the stack, the value is now in two
|
|
// places. We need to set the COW flag to prevent mutations of one copy
|
|
// affecting the other one.
|
|
value = apfl_value_set_cow_flag(value);
|
|
} else {
|
|
stack_must_drop(ctx, -1);
|
|
}
|
|
return APFL_RESULT_OK;
|
|
}
|
|
|
|
static enum apfl_result
|
|
variable_new(apfl_ctx ctx, struct apfl_string *name)
|
|
{
|
|
if (!apfl_scope_create_var(&ctx->gc, ctx->scope, name)) {
|
|
return APFL_RESULT_ERR_FATAL;
|
|
}
|
|
return APFL_RESULT_OK;
|
|
}
|
|
|
|
static enum apfl_result
|
|
evaluate(apfl_ctx ctx, size_t *i, struct instruction_list *ilist)
|
|
{
|
|
union instruction_or_arg arg;
|
|
|
|
assert(*i < ilist->len);
|
|
switch (ilist->instructions[(*i)++].instruction) {
|
|
case INSN_NIL:
|
|
return stack_push_or_fatal(ctx, (struct apfl_value) {.type = VALUE_NIL});
|
|
case INSN_TRUE:
|
|
return stack_push_or_fatal(ctx, (struct apfl_value) {
|
|
.type = VALUE_BOOLEAN,
|
|
.boolean = true,
|
|
});
|
|
case INSN_FALSE:
|
|
return stack_push_or_fatal(ctx, (struct apfl_value) {
|
|
.type = VALUE_BOOLEAN,
|
|
.boolean = true,
|
|
});
|
|
case INSN_NUMBER:
|
|
TRY(get_argument(i, ilist, &arg));
|
|
return stack_push_or_fatal(ctx, (struct apfl_value) {
|
|
.type = VALUE_NUMBER,
|
|
.number = arg.number,
|
|
});
|
|
case INSN_STRING:
|
|
TRY(get_argument(i, ilist, &arg));
|
|
return stack_push_or_fatal(ctx, (struct apfl_value) {
|
|
.type = VALUE_STRING,
|
|
.string = arg.string,
|
|
});
|
|
case INSN_LIST:
|
|
TRY(get_argument(i, ilist, &arg));
|
|
return apfl_list_create(ctx, arg.count);
|
|
case INSN_LIST_APPEND:
|
|
return apfl_list_append(ctx, -2, -1);
|
|
case INSN_LIST_EXPAND_INTO:
|
|
return apfl_list_append_list(ctx, -2, -1);
|
|
case INSN_DICT:
|
|
return apfl_dict_create(ctx);
|
|
case INSN_DICT_APPEND_KVPAIR:
|
|
return apfl_dict_set(ctx, -3, -2, -1);
|
|
case INSN_GET_MEMBER:
|
|
return apfl_get_member(ctx, -2, -1);
|
|
case INSN_VAR_NEW:
|
|
TRY(get_argument(i, ilist, &arg));
|
|
return variable_new(ctx, arg.string);
|
|
case INSN_VAR_GET:
|
|
TRY(get_argument(i, ilist, &arg));
|
|
return variable_get(ctx, arg.string);
|
|
case INSN_VAR_SET:
|
|
TRY(get_argument(i, ilist, &arg));
|
|
return variable_set(ctx, arg.string, true);
|
|
case INSN_NEXT_LINE:
|
|
ctx->execution_line++;
|
|
return APFL_RESULT_OK;
|
|
case INSN_SET_LINE:
|
|
TRY(get_argument(i, ilist, &arg));
|
|
ctx->execution_line = arg.count;
|
|
return APFL_RESULT_OK;
|
|
}
|
|
|
|
assert(false);
|
|
return APFL_RESULT_ERR;
|
|
}
|
|
|
|
static enum apfl_result
|
|
evaluate_list(apfl_ctx ctx, struct instruction_list *ilist)
|
|
{
|
|
ctx->execution_line = ilist->line;
|
|
size_t i = 0;
|
|
while (i < ilist->len) {
|
|
TRY(evaluate(ctx, &i, ilist));
|
|
}
|
|
return APFL_RESULT_OK;
|
|
}
|
|
|
|
static enum apfl_result
|
|
eval_inner(apfl_ctx ctx, struct apfl_expr expr)
|
|
{
|
|
struct instruction_list *ilist = apfl_instructions_new(&ctx->gc, expr.position.line);
|
|
if (ilist == NULL) {
|
|
return APFL_RESULT_ERR_FATAL;
|
|
}
|
|
|
|
if (!apfl_gc_tmproot_add(&ctx->gc, GC_OBJECT_FROM(ilist, GC_TYPE_INSTRUCTIONS))) {
|
|
return APFL_RESULT_ERR_FATAL;
|
|
}
|
|
|
|
struct apfl_error error;
|
|
if (!apfl_compile(&ctx->gc, expr, &error, ilist)) {
|
|
return APFL_RESULT_ERR;
|
|
}
|
|
|
|
return evaluate_list(ctx, ilist);
|
|
}
|
|
|
|
enum apfl_result
|
|
apfl_eval(apfl_ctx ctx, struct apfl_expr expr)
|
|
{
|
|
// TODO: expr might have been allocated with another allocator. The apfl_ctx
|
|
// should probably also handle parsing and no longer accept
|
|
// expressions directly.
|
|
|
|
size_t tmproots = apfl_gc_tmproots_begin(&ctx->gc);
|
|
enum apfl_result result = eval_inner(ctx, expr);
|
|
apfl_gc_tmproots_restore(&ctx->gc, tmproots);
|
|
|
|
return result;
|
|
}
|
|
|
|
void
|
|
apfl_debug_print_val(apfl_ctx ctx, apfl_stackidx index, FILE *f)
|
|
{
|
|
struct apfl_value value;
|
|
if (!apfl_stack_pop(ctx, &value, index)) {
|
|
fprintf(f, "apfl_debug_print_val: Invalid stack index %d\n", index);
|
|
return;
|
|
}
|
|
|
|
apfl_value_print(value, f);
|
|
}
|